Abstract

As an essential component of chip laboratories and microfluidic systems, micromixers are widely used in fields such as chemical and biological analysis. In this work, a square cavity micromixer with multiple structural parameters (baffles, obstacles, and gaps) has been proposed to further improve the mixing performance of micromixers. This study examines the comprehensive effects of various structural parameters on mixing performance. The impact of baffle length, obstacle length-to-width ratio, gap width, and obstacle shape on the mixing index and pressure drop were numerically studied at different Reynolds numbers (Re). The results show that the mixing index increases with baffle length and obstacle length-to-width ratio and decreases with gap width at Re = 0.1, 1, 10, 20, 40, and 60. The mixing index can reach more than 0.98 in the range of Re ≥ 20 when the baffle length is 150 μm, the obstacle length-to-width ratio is 600/100, and the gap width is 200 μm. The pressure drop of the microchannel is proportional to baffle length and obstacle length-to-width ratio. Combining baffles and obstacles can further improve the mixing performance of square cavity micromixers. A longer baffle length, larger obstacle length-to-width ratio, narrower gap width, and a more symmetrical structure are conducive to improving the mixing index. However, the impact of pressure drop must also be considered comprehensively. The research results provide references and new ideas for passive micromixer structural design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.