Abstract

We propose a two-layer integral equation model (IEM) model including multiple-scattering terms to reproduce the phase signature of buried wet structures that we observed on L-band synthetic aperture radar (SAR) images. We have good agreement between the extended (single+multiple scattering) IEM model and previous results obtained using a single-scattering IEM model combined with finite-difference time-domain simulations. We show that the multiple scattering not only significantly influences the copolarized phase difference but can also be related to the soil moisture content. In order to assess the validity of our extended model, we performed radar measurements on a natural outdoor site and showed that they could be fairly well fitted to the extended model. A parametric analysis presents the dependence of the copolarized phase difference on roughness parameters (rms height and correlation length) and radar parameters (frequency and incidence angle). Our study also shows that the phase signature should allow detection of buried wet structures down to a larger depth for C-band (3.8 m) than for L-band (2.6 m). This signature could then be used to map subsurface moisture in arid regions using polarimetric SAR systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.