Abstract

Statement of problemHow multiple firing cycles may affect the oxide layer and, consequently, the shear bond strength of metal-ceramic restorations is unclear. PurposeThe purpose of this in vitro study was to determine the effect of multiple firings on the shear bond strength of porcelain to cobalt-chromium (Co-Cr) alloy. Material and methodsForty cylinders (Ø6.8×9 mm) of a representative presintered Co-Cr alloy (Ceramill Sintron) were prepared with computer-aided design and computer-aided manufacturing (CAD-CAM) technology. After airborne-particle abrasion and polishing, the specimens were ultrasonically cleaned of surface contaminants. A circular surface (Ø4×2 mm) was veneered on each specimen with porcelain (VM13) after 3 firings (wash opaque, opaque, and dentin). The specimens were then randomly divided into 4 groups (n=10). The normal group underwent 3 firings. The other groups underwent an additional porcelain firing: the one-plus firing group underwent 4 firings, the two-plus firing group underwent 5 firings, and the three-plus firing group underwent 6 firings. Next, the specimens were mounted in autopolymerized acrylic resin and tested in a universal testing machine and loaded at a crosshead speed of 0.5 mm/min at the metal-ceramic interface until fracture occurred. The average shear bond strength (MPa) was calculated by dividing the maximum fracture force (N) by the bonded surface of the specimens (mm2). The fracture patterns were observed microscopically and classified as adhesive, cohesive, or mixed. One-way ANOVA was used to determine differences between groups (α=.05). ResultsNo significant differences were found among the shear bond strengths of specimens after 3, 4, 5, and 6 porcelain firings (P>.05). The mean bond strength of all groups ranged from 30 to 34 MPa. The fracture pattern of all specimens was mixed, indicating that multiple firings had no significant effect on the failure pattern. ConclusionsMultiple porcelain firings under controlled conditions had no significant effect on the fracture pattern or shear bond strength of porcelain to a presintered Co-Cr alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.