Abstract

The electronic structures of TixZrx/2CoPbxTex, TixZrx/2Hfx/2CoPbxTex (x = 0.5), and the parent compound TiCoSb were investigated using the full potential linearized augmented plane wave method. The thermoelectric transport properties of these alloys are calculated on the basis of semi-classical Boltzmann transport theory. From the band structure calculations we show that the substitution of Zr,Hf in the Ti site and Pb and Te in the Sb site lower the band gap value and also change the indirect band (IB) gap of TiCoSb to the direct band (DB) gap. The calculated band gap of TiCoSb, TixZrx/2CoPbxTex, and TixZrx/2Hfx/2CoPbxTex are 1.04 eV (IB), 0.92 eV (DB), and 0.93 eV (DB), respectively. All these alloys follow the empirical rule of 18 valence-electron content which is essential for bringing semiconductivity in half Heusler alloys. It is shown that the substitution of Hf at the Ti site improve the ZT value (~1.05) at room temperature, whereas there is no significant difference in ZT is found at higher temperature. Based on the calculated thermoelectric transport properties, we conclude that the appropriate concentration of Hf substitution can further improve the thermoelectric performance of TixZrx/2Hfx/2CoPbxTex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call