Abstract

The high-frequency properties of the FeCo-SiO2 monolayer nanogranular films and FeCo/(FeCo)0.63(SiO2)0.37 multilayer nanogranular films which were elaborated on flexible substrates by magnetron sputtering system were studied. Compared to the monolayer films with the same FeCo content, the multilayer structures comprised of FeCo/(FeCo)0.63(SiO2)0.37 exhibit more excellent properties that the real and imaginary parts of permeability, more than the double value of the monolayer, increase to 250 and 350, respectively. The variation was considered owing to the reduction of the anisotropy field.

Highlights

  • With the rapid increase of demand for the devices used in microwave band, ferromagnetic thin films with the potential for excellent magnetic property in the GHz range, owing to their special structure characteristics and free from Snoek limitation, have been widely studied in recent years

  • FeCo-SiO2 monolayer films and FeCo/(FeCo)0.63(SiO2)0.37 multilayer films were all elaborated on flexible substrates by magnetron sputtering system under external bias magnetic field

  • As the cross-sectional SEM image of multilayer films are shown on Figure 2, the total experiment thickness of a batch circled by red line, which includes a FeCo layer and a FeCo-SiO2 layer, was 30 nm

Read more

Summary

Introduction

With the rapid increase of demand for the devices used in microwave band, ferromagnetic thin films with the potential for excellent magnetic property in the GHz range, owing to their special structure characteristics and free from Snoek limitation, have been widely studied in recent years.The basic requirements for magnetic films operated in high frequency are high permeability (μ) and high resistivity (ρ) in GHz range, and metal insulating films, especially Fe and Co based films, have enormous potential to achieve a high permeability, owing to their high saturation magnetization and suitable anisotropic field [1,2,3]. With the rapid increase of demand for the devices used in microwave band, ferromagnetic thin films with the potential for excellent magnetic property in the GHz range, owing to their special structure characteristics and free from Snoek limitation, have been widely studied in recent years. For the monolayer ferromagnetic films, it is promising to achieve high microwave permeability to increase film thickness. The negative influence, the serious skin effect and eddy current [4,5], and the obvious outof-plane anisotropy in the high frequency, will block the increasing of the permeability, while the thin magnetic films, with specific multilayer structure design, can efficiently avoid the above negative effect and improve high-frequency properties by leading into different

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.