Abstract

Thin hard coatings are widely used in the protection of cutting tools, dies and molds to prolong their wear resistance and lifetime. Superior properties of different coatings can be combined with multilayer design, and especially a higher microhardness can be obtained by nanocomposite structures. In this study, a multilayer design composing of TiAlSiN, TiSiN and TiAlN layers was applied on carbide cutting tools. The top TiAlSiN layer has a nanocomposite structure of crystalline fcc-TiAlN and amorphous Si3N4 phases. The multilayer nanocomposite TiAlSiN/TiSiN/TiAlN coating was deposited on the carbide cutting tool using an industrial magnetron sputtering system. Wear behavior of the coated tools was investigated in the milling of hardened AISI D2 steel (~55 HRc). The changes in tool wear and surface roughness as a function of cutting distance were recorded. Wear mechanisms and types were investigated using optical and scanning electron microscopy in combination with energy dispersive spectroscopy. It was found that the multilayer nanocomposite TiAlSiN/TiSiN/TiAlN coating provides at least 1.2 times higher wear resistance and a longer lifetime than single layer TiN and TiAlN coatings. Main wear mechanisms are abrasion and adhesion of the workpiece material on the cutting edge. As a result, wear types are notch wear and build-up-edge formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.