Abstract

Bronze-processed Nb3Sn-based multifilamentary composites with external diameter of 0.8 and 0.5 mm and coupled Nb filaments have been studied by transmission (TEM) and scanning (SEM) electron microscopy. After the two-staged annealing, 575°С, 150 h + 650°С, 200 h, commonly used for ITER conductors, a nanocrystalline layer of superconducting Nb3Sn compound is formed in every Nb filament as a result of solid-state reactive diffusion of Sn from the bronze matrix. It is demonstrated that in the wires of smaller external diameter the Nb filaments transformation into the Nb3Sn compound is more pronounced, that is the amount of the residual Nb is smaller. Besides, the nanocrystalline structure of the Nb3Sn diffusion layers is more perfect in 0.5 mm diameter wires, namely, the Nb3Sn grains are finer (their average size being 60 nm compared to 70 nm in 0.8 mm diameter wires) and are more uniform in sizes (the root mean square deviation of grain size distribution is correspondingly 15 and 17 nm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.