Abstract
Multiband transport in superconductors is interesting both from an academic as well as an application point of view. It has been postulated that interband scattering can significantly affect the carrier dynamics in these materials. In this article we present a detailed study of the electrical transport properties of the high-mobility two-dimensional electron gas residing at the interface of LaAlO$_3$/SrTiO$_3$, a prototypical multi-band superconductor. We show, through careful measurements of the gate dependence of the magnetoresistance and resistance fluctuations at ultra-low temperatures, that transport in the superconducting regime of this system has contributions from two bands which host carriers of very different characters. We identify a gate-voltage tunable Lifshitz transition in the system and show that the resistance fluctuations have strikingly different features on either side of it. At low carrier densities, resistance noise is dominated by number-density fluctuations arising from trapping-detrapping of charge carriers from defects in the underlying SrTiO$_3$ substrate, characteristic of a single-band semiconductor. Above the Lifshitz transition, the noise presumably originates from inter-band scattering. Our work highlights the importance of inter-band scattering processes in determining the transport properties of low-dimensional systems and projects resistance fluctuation spectroscopy as a viable technique for probing the charge carrier dynamics across a Lifshitz transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.