Abstract
The effect of multi-walled carbon nanotubes on the crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has been investigated. The results have shown that carbon nanotubes (CNTs) act as an effective heterogeneous nucleation agent, inducing an increase in crystallinity and crystallite sizes. Comparing with the double melting peaks in pure PHBV, there is only one peak in the melting curves of nanocomposites. The isothermal crystallization kinetics of PHBV and its nanocomposite containing 0.5% CNTs were examined based on Avrami equation, indicating that the crystallization half-time decreases while the overall crystallization rate k increases dramatically with CNTs addition. The spherulitic nucleation and growth kinetics were also discussed grounded on Lauritzen–Hoffman equation. It is found that there is a spherulitic growth rates (G) maximum within selected temperature range in our study. Also, the temperatures corresponding to G maximum shift to a high level with addition of CNTs. The parameters of the equilibrium melting temperature \( T_m^0 \), the nucleation parameter Kg, the lateral surface free energy σ, the fold surface free energy σe, and the work of chain folding q of PHBV and its composite containing 0.5% CNTs were all calculated. The reductions of Kg, σe and q values of nanocomposite are in agreement with the fact that the crystallization rate of PHBV increases greatly by addition of CNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.