Abstract

Magnesium matrix composites are extensively used in automotive and structural applications due to their low density, high strength, and wear-resistant properties. To reach the scope of industry needs, research is carried out regarding enhancing the mechanical and tribological behavior of the magnesium composites by reinforcing the nano-sized reinforcements. In the present work, research has been carried out to enhance the properties of the magnesium AZ91D hybrid composite by reinforcing carbon fibers (CFs) and multi-walled carbon nanotubes (MWCNTs) with varying weight percentages (AZ91D + 0.5% CF’s + 0.5% MWCNT and AZ91D + 0.75% CF’s + 0.75% MWCNT, respectively). The experimental tests were carried out to evaluate the mechanical and tribological behavior of the composites. The test results showed that the addition of CF and MWCNT reinforcements improved the hybrid Mg composite’s hardness, tensile strength, and impact strength compared to the base Mg matrix. The AZ91D + 0.75% CF’s + 0.75% MWCNT hybrid composite showed a 19%, 35%, and 66% increased hardness, tensile strength, and impact strength, respectively, compared to the base Mg AZ91D. The wear test results also showed the improved wear resistance of the Mg composite compared to the base matrix. The enhanced wear resistance of the composite is due to the addition of hard MWCNT and CF reinforcements. The wear rate of the AZ91D + 0.75%CF’s + 0.75% MWCNT composite for a load of 30 N at a sliding distance of 1500 m is lower as compared to the base matrix. The SEM micrographs of the worn surfaces revealed the existence of abrasive wear. The improved mechanical and tribological behavior of the magnesium composite is also due to the homogeneous distribution of the hard reinforcement particles along the grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.