Abstract

This study was carried out to analyze the impact of four skin models and three skin characteristics on Monte Carlo simulation of light-skin diffuse reflectance spectra. The simulation was performed using graphic processing unit (GPU)-based Monte Carlo code (CUDAMCML). The computation platform was a laptop with 2.3 GHz processor (Intel Core i5-2410M) and supported by NVIDIA’s Compute Unified Device Architecture (CUDA) graphic card (GeForce GT 520M). This analysis showed the importance of taking into account the depth distribution of melanin in designing a multi-layered skin model. Addition of complexity to the model caused only less than two minutes increment of computation time. Increase of melanin concentration reduced the values of diffuse reflectance over the spectrum while the profile of ‘W’ curve became less-defined. Increase of blood concentration also decreased the values of diffuse reflectance (particularly at wavelengths < 600 nm) but the profile of ‘W’ curve became more-defined. Increase of epidermal and dermal thicknesses influenced the diffuse reflectance spectra but not for subcutaneous fat thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.