Abstract
To investigate whether parallel imaging-imposed geometric coil constraints can be relaxed when using a deep learning (DL)-based image reconstruction method as opposed to a traditional non-DL method. Traditional and DL-based MR image reconstruction approaches operate in fundamentally different ways: Traditional methods solve a system of equations derived from the image data whereas DL methods use data/target pairs to learn a generalizable reconstruction model. Two sets of head coil profiles were evaluated: (1) 8-channel and (2) 32-channel geometries. A DL model was compared to conjugate gradient SENSE (CG-SENSE) and L1-wavelet compressed sensing (CS) through quantitative metrics and visual assessment as coil overlap was increased. Results were generally consistent between experiments. As coil overlap increased, there was a significant (p < 0.001) decrease in performance in most cases for all methods. The decrease was most pronounced for CG-SENSE, and the DL models significantly outperformed (p < 0.001) their non-DL counterparts in all scenarios. CS showed improved robustness to coil overlap and signal-to-noise ratio (SNR) versus CG-SENSE, but had quantitatively and visually poorer reconstructions characterized by blurriness as compared to DL. DL showed virtually no change in performance across SNR and very small changes across coil overlap. The DL image reconstruction method produced images that were robust to coil overlap and of higher quality than CG-SENSE and CS. This suggests that geometric coil design constraints can be relaxed when using DL reconstruction methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.