Abstract
Experimental pain or its anticipation influence motor preparation processes as well as upcoming movement execution, but the underlying physiological mechanisms remain unknown. Our results showed that movement-related pain modulates corticospinal excitability during motor preparation. In accordance with the pain adaptation theory, corticospinal excitability was higher when the muscle has an antagonist (vs. an agonist) role for the upcoming movement associated with pain. Anticipation of movement-related pain also affects motor initiation and execution, with slower movement initiation (longer reaction times) and faster movement execution compared to movements that do not evoke pain. These results confirm the implementation of protective strategies during motor preparation known to be relevant for acute pain, but which may potentially have detrimental long-term consequences and lead to the development of chronic pain. When a movement repeatedly generates pain, we anticipate movement-related pain and establish self-protective strategies during motor preparation, but the underlying mechanisms remains poorly understood. The current study investigated the effect of movement-related pain anticipation on the modulation of behaviour and corticospinal excitability during the preparation of arm movements. Participants completed an instructed-delay reaction-time (RT) task consisting of elbow flexions and extensions instructed by visual cues. Nociceptive laser stimulations (unconditioned stimuli) were applied to the lateral epicondyle during movement execution in a specific direction (CS+) but not in the other (CS-), depending on experimental group. During motor preparation, transcranial magnetic stimulation was used to measure corticospinal excitability in the biceps brachii (BB). RT and peak end-point velocity were also measured. Neurophysiological results revealed an opposite modulation of corticospinal excitability in BB depending on whether it plays an agonist (i.e. flexion) or antagonist (i.e. extension) role for the CS+ movements (P<0.001). Moreover, behavioural results showed that for the CS+ movements RT did not change relative to baseline, whereas the CS- movements were initiated more quickly (P=0.023) and the CS+ flexion movements were faster relative to the CS- flexion movements (P<0.001). This is consistent with the pain adaptation theory which proposes that in order to protect the body from further pain, agonist muscle activity is reduced and antagonist muscle activity is increased. If these strategies are initially relevant and lead to short-term pain alleviation, they may potentially have detrimental long-term consequences and lead to the development of chronic pain.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.