Abstract

Mechanical subsoiling is an effective practice to promote better water infiltration and crop root development. The bending subsoiling tool (BST) is a primary subsoiling tool and is used to remove soil compaction and restore soil productivity. In this study, a discrete element model was developed and validated using laboratory soil bin tests to investigate the effects of the mounting angle of the BST (5°–33°) on soil disturbance behaviors and draft forces. The results show that the upheaval, failure and fragmentation of soil was achieved by successive shearing, uplifting, extrusion, tension and turning actions from the cutting share and cambered shank of the BST. Increasing soil depths gave smaller soil disturbance ranges in lateral, forward and upward directions. With an increase in mounting angle, both the draft force and soil rupture distance ratio initially decreased and then increased, whereas the soil loosening efficiency initially increased and then decreased. Overall, increasing the mounting angle of the BST from 5° to 33° gave a greater soil surface flatness that increased rapidly when the mounting angle increased from 26° to 33°. Appropriately increasing mounting angle of the BST from 5° to 26° could lift more moist soil from the deep seed and middle layers (5.0–15.5% increase) into the shallow seed layer (depth of <50 mm) without seriously affecting the mixing of the deep layer and other layers. Considering both the soil disturbance characteristics and draft forces, a mounting angle of 26° appeared to outperform the other angles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.