Abstract

1. The effect of motor unit recruitment on functional vasodilatation was investigated in hamster retractor muscle. Recruitment (i.e. peak tension) was controlled with voltage applied to the spinal accessory nerve (high = maximum tension; intermediate = approximately 50% maximum; low = approximately 25% maximum). Vasodilatory responses (diameter times time integral, DTI) to rhythmic contractions (1 per 2s for 65s) were evaluated in first, second and third order arterioles and in feed arteries. Reciprocal changes in duty cycle (range, 2.5-25%) effectively maintained the total active tension (tension times time integral, TTI) constant across recruitment levels. 2. With constant TTI and stimulation frequency (40 Hz), DTI in all vessels increased with motor unit recruitment. DTI increased from distal arterioles up through proximal feed arteries. 3. To determine whether the effect of recruitment on DTI was due to increased peak tension, the latter was controlled with stimulation frequency (15, 20 and 40 Hz) during maximum (high) recruitment. With constant TTI, DTI then decreased as peak tension increased. 4. To explore the interaction between recruitment and duty cycle on DTI, each recruitment level was applied at 2.5, 10 and 20 % duty cycle (at 40 Hz). For a given increase in TTI, recruitment had a greater effect on DTI than did duty cycle. 5. Functional vasodilatation in response to rhythmic contractions is facilitated by motor unit recruitment. Thus, vasodilatory responses are determined not only by the total tension produced, but also by the number of active motor units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.