Abstract

Monolayer transition metal dichalcogenides (TMDs), typical two-dimensional semiconductors, have been extensively studied for their extraordinary physical properties and utilized for nanoelectronics and optoelectronics. However, the finite samples and discontinuity in the synthesis process of TMD materials definitely induce defect edges in nanoribbons and greatly influence the device performance. Here, we systematically studied the atomic structures, energetic and mechanical stability, and electronic and catalytic properties of MoSe2 nanoribbons on the basis of experiments. Clear benefits of ZZSe-Mo-NW30 edged nanoribbons were found to evidently increase the dynamic stability according to our first-principles calculations. Meanwhile, unsaturated Mo atoms at the edge sites induced local magnetic moments up to 0.54 μB and changed the chemical environments of adjacent Se atoms, which acted as active sites for the hydrogen evolution reaction (HER) with a lower onset potential of -0.04 eV. The external tensile strain on these nanoribbons can have negligible effects on the electronic and catalytic properties. The onset potential of the ZZSe-Mo-NW30 edged nanoribbons only changed 0.03 eV under critical tensile strain. The atomic-scale research of edge reconstructions in TMD materials provides new opportunities to modulate the synthesis mechanism for experiments and defect-engineering applications in electrochemical catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.