Abstract
Graphite-like carbon nitride (g-C3N4) photocatalysts with different morphologies have been synthesized using melamine as a precursor using a template-free wet chemical method. The as-prepared g-C3N4 nanorods, g-C3N4 microcones and porous g-C3N4 quadruple prisms were characterized by XRD, FESEM, FT-IR and UV–vis absorption spectrophotometer. These nanostructured g-C3N4 photocatalysts show better photocatalytic activity than bulk g-C3N4 under visible light irradiation in view of degrading Rhodamine B (RhB). The porous g-C3N4 quadruple prisms show the highest photocatalytic efficiency. We deduce that the surface area of the catalysts and their adsorption ability of target molecules play important roles in improving the photocatalytic activity of the g-C3N4 photocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.