Abstract

AbstractThe dynamic mechanical properties of semicrystalline poly(tetramethyl‐p‐silphenylene siloxane) in three morphological preparations were measured over the wide frequency range of about 0.002 Hz to 500 Hz and the temperature range of about − 190°C to 100°C. The three samples were all isothermally crystallized at 125°C. Two samples had a spherulite size of 25 μ diameter but differed in the time allowed for secondary crystallization. The other sample had a smaller spherulite size. By assuming compliance additivity, the viscoelastic behavior could be separated into five relaxation processes with an indication that a sixth existed at low temperature. Two processes called γ1 and γ2 could be resolved at low temperatures. The γ1 process was associated with the amorphous region since the peak strength was affected by the rate of cooling through the glass transition region; the γ2 peak, unaffected by cooling rate, is attributed to the crystalline part. In the high‐temperature region, the β peak is associated with the glass transition and has a shape and location that is essentially independent of the morphology. The highest temperature α2 process, whose maximum was not observed in the experimental range covered, is attributed to the crystalline region and is sensitive to changes in crystallization history. The strength of the α1 process unlike that of the other processes was found to be a function of temperature; it was associated with the noncrystalline region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.