Abstract

Catalytic oxidation is regarded as an effective, economical, and practical approach to remove volatile organic compounds such as important air pollutants. CeO2 catalysts with different morphologies exhibit different oxygen vacancies content, which plays a vital role in oxidation reaction. Herein, three distinct morphologies of CeO2 i.e., shuttle (CeO2 (S)), nanorod (CeO2 (R)), and nanoparticle (CeO2 (P)), were successfully fabricated by the SEM and TEM results, and investigated for toluene catalytic oxidation. The various characterizations showed that the CeO2 (S) catalyst exhibited a larger surface area along with higher surface oxygen vacancies in contrast to CeO2 (R) and CeO2 (P), which is responsible for its excellent toluene catalytic oxidation. The 90% toluene conversion temperature at 225 °C over CeO2 (S) was less than that over CeO2 (R) (283 °C) and CeO2 (P) (360 °C). In addition, CeO2 (S) showed a greater reaction rate (14.37 × 10−2 μmol∙g−1∙s−1), TOFov (4.8 × 10−4∙s−1) at 190 °C and lower activation energy value (67.4 kJ/mol). Furthermore, the CeO2 (S) also displayed good recyclability, long-term activity stability, and good tolerance to water. As a result, CeO2 (S) is considered a good candidate to remove toluene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.