Abstract
Sulfonated mesoporous benzene-silicas were introduced into a poly(vinyl alcohol) (PVA) polymer matrix to act as a barrier for methanol crossover, to prepare composite electrolyte membranes for direct methanol fuel cell applications. Highly ordered 2D hexagonal mesoporous benzene-silicas were prepared using 1,4-bis(triethoxysilyl)benzene (BTEB) organosilica precursor and two kinds of organic templates, such as an octadecyltrimethylammonium bromide (ODTMA) and a Pluronic P123 poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer, to investigate the effect of the morphology and the pore size on the methanol permeability and the proton conductivity of the membranes. The sulfonated mesoporous benzene-silica and PVA were mixed with a sulfosuccinic acid (SSA) cross-linker to improve the membrane stability from mechanical and conductive viewpoints. The physical and chemical characterization of the hybrid electrolyte membranes was performed by varying the contents of sulfonated mesoporous benzene-silicas and SSA. All the hybrid membranes studied showed good performance in lowering the methanol crossover (i.e., approximately 68% reduction in comparison with the Nafion117 membrane), and mesoporous benzene-silica with smaller particle morphology and pores (2-3 nm) was observed to be a more effective additive.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.