Abstract
In this work, electrically and thermally conductive poly (butylene terephthalate) nanocomposites were prepared by in-situ ring-opening polymerization of cyclic butylene terephthalate (CBT) in presence of a tin-based catalyst. One type of graphite nanoplatelets (GNP) and two different grades of reduced graphene oxide (rGO) were used. Furthermore, high temperature annealing treatment under vacuum at 1700{\deg}C was carried out on both RGO to reduce their defectiveness and study the correlation between the electrical/thermal properties of the nanocomposites and the nanoflakes structure/defectiveness. The morphology and quality of the nanomaterials were investigated by means of electron microscopy, x-ray photoelectron spectroscopy, thermogravimetry and Raman spectroscopy. Thermal, mechanical and electrical properties of the nanocomposites were investigated by means of rheology, dynamic mechanical thermal analysis, volumetric resistivity and thermal conductivity measurements. Physical properties of nanocomposites were correlated with the structure and defectiveness of nanoflakes, evidencing a strong dependence of properties on nanoflakes structure and defectiveness. In particular, a significant enhancement of both thermal and electrical conductivities was demonstrated upon the reduction of nanoflakes defectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.