Abstract

Nanocomposite hydrogels were prepared by cross-linking of aqueous solutions of sulfonated polyacrylamide/sodium montmorillonite with chromium triacetate. The gelation process and effects of clay content and ionic strength on swelling behavior were investigated. X-ray diffraction patterns indicated that exfoliated type of microstructure was formed. Study of the gelation behavior using dynamic rheometery showed that the limiting storage modulus of the nanocomposite (NC) gels decreased with increasing clay content up to 1000 ppm, but it increased by further increase of Na +-montmorillonite concentration. It was also found that with increasing the clay content, the viscous energy dissipation properties of the nanocomposite gels increased. The swelling ratio of nanocomposite gels in tap water decreased as the concentration of the clay increased. However, nanocomposite gels showed higher resistance against syneresis in electrolyte solutions as compared with unfilled gels. Therefore, they are potentially good candidates for enhanced oil recovery applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call