Abstract

Calbindin D9k is a member of the S100 subfamily of EF-hand calcium binding proteins, and has served as an important model system for biophysical studies. The fast timescale dynamics of the calcium-free (apo) state is characterized using molecular dynamics simulations. Order parameters for the backbone NH bond vectors are determined from the simulations and compared with experimentally derived values, with a focus on the dynamics of calcium-binding site I. There is a significant discrepancy between simulated and experimental order parameters for site I residues in the case of no ion bound in site I. However, it was found in the simulations that a Na+ ion can bind in site I, and the resulting order parameters determined from the simulations are in excellent agreement with experiment. Comparisons are made to X-ray structures of other S100 family members in which Na+ ions were observed or suggested to be bound in site I. © 2019 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call