Abstract

This study evaluated the effect of resin monomer composition on crystal growth at the interface between the resin/bioglass composites and water. Light-cured resin that contained 2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl], 2-hydroxyethyl methacrylate, and triethylene glycol dimethacrylate with different compositions were used. Resin/bioglass composites were prepared with 40 mass% bioglass and 60 mass% resin. The resin/bioglass composites were stored in deionized distilled water for 24 h (control group) or 3-12 months (experimental groups). After water storage, the disk surfaces were examined by light- and scanning electron microscopy. Chemical states of the crystals were analyzed by laser-Raman spectroscopy and micro-X-ray diffractometry. The microscopic analysis showed crystal on the resin disks surface after six months of water storage for hydrophilic resins. However, there was no crystal formation in the control and the experimental groups of specimens of hydrophobic resins. Raman analysis showed the chemical states of the crystals formed on the resin matrix and bioglass to be different. The micro-X-ray analysis of crystals on resin disks identified them to be calcium carbonate. This crystal formation occurred in water instead of simulated body fluid. In conclusion, the resin monomer compositions affected the ability to induce crystal growth on the surfaces of disks containing bioglass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.