Abstract

Three isoforms of phospholipase C, either PLC-beta 1, PLC-gamma 1, or PLC-delta 1, were added to the aqueous subphase beneath phospholipid monolayers formed at an air-solution interface, and the initial rate of hydrolysis of phosphatidylinositol 4,5-bisphosphate was measured after addition of 10 microM free Ca2+. The monolayers were formed from mixtures of phosphatidylcholine (65% PC), phosphatidylserine (33% PS), and phosphatidylinositol 4,5-biphosphate (2% PIP2). Increasing the surface pressure of the monolayer, pi, from 15 to 25 mN/m decreases the rate of hydrolysis 16-, 13-, and 5-fold for PLC-beta 1, PLC-gamma 1, and PLC-delta 1, respectively. The simplest interpretation of these results is that a portion of each of the enzymes of area Ap must insert into the monolayer, doing work pi Ap, prior to hydrolysis of PIP2; binding studies with simple model compounds of known cross-sectional area are consistent with this interpretation. Removing the monovalent acidic lipid PS from the monolayer decreases the initial rates of hydrolysis of PIP2 about 3-fold for each PLC isoform, which suggests that negative electrostatic surface potentials increase the PLC activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.