Abstract

The avian circadian system is a complex of mutually coupled pacemakers residing in pineal gland, retina and suprachiasmatic nucleus. In this study, the self-regulation mechanism of pineal circadian rhythm was investigated by culturing chick primary pinealocytes exposed to red light (RL), green light (GL), blue light (BL), white light (WL) and constant darkness (DD), respectively. All illuminations were set up with a photoperiod of 12 light: 12 dark. The 24-h expression profiles of seven core clock genes (cBmal1/2, cClock, cCry1/2 and cPer2/3), cAanat and melatonin showed significant circadian oscillation in all groups, except for the loss of cCry1 rhythm in BL. Compared to WL, GL increased the amplitudes and mesors of positive elements (cClock and cBmal1/2) and reduced those of negative elements (cCry1/2 and cPer2/3), in contrast to RL. The temporal patterns of cAanatmRNA and melatonin secretion have always been consistent with the positive genes. Besides, GL advanced the acrophases of the positive elements, cAanat and melatonin, but RL and BL showed the opposite effect. Thereby, GL could promote the secretion of melatonin by enhancing the expressions of positive clock genes and repressing the expressions of negative clock genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.