Abstract

Nata de coco has been used as a raw material for food preparation. In this study, the production of carboxymethyl cellulose (CMC) film from nata de coco and the effect of monochloroacetic acid on carboxymethyl bacterial cellulose (CMCn) and its film were investigated. Bacterial cellulose from nata de coco was modified into CMC form via carboxymethylation using various concentrations of monochloroacetic acid (MCA) at 6, 12, 18, and 24 g per 15 g of cellulose. The results showed that different concentrations of MCA affected the degree of substitution (DS), chemical structure, viscosity, color, crystallinity, and morphology of CMCn. The optimum treatment for carboxymethylation was found using 24 g of MCA per 15 g of cellulose, which provided the highest DS at 0.83. The morphology of CMCn was related to DS value; a higher DS value showed denser and smoother surface than nata de coco cellulose. The various MCA concentrations increased the mechanical properties (tensile strength and percentage of elongation at break) and water vapor permeability of CMCn, which were related to the DS value.

Highlights

  • Nata de coco is generally consumed as an ingredient in a dessert, which is produced by the action of Acetobacter xylinum via acetic acid fermentation with coconut juice [1,2]

  • Many research projects have studied the production of bacterial cellulose that is converted to carboxymethyl cellulose, such as carboxymethylated-bacterial cellulose for copper and lead ion removal [4] and artificial blood vessels for microsurgery [5]

  • The carboxymethyl cellulose (CMC) was found with Degree of Substitution (DS) values of 0.20 and 0.83

Read more

Summary

Introduction

Nata de coco is generally consumed as an ingredient in a dessert, which is produced by the action of Acetobacter xylinum (formerly known as vinegar bacterium) via acetic acid fermentation with coconut juice [1,2]. This bacterium is the most effective producer of cellulose, which uses carbon and nitrogen sources in a liquid medium [3]. Many research projects have studied the production of bacterial cellulose that is converted to carboxymethyl cellulose, such as carboxymethylated-bacterial cellulose for copper and lead ion removal [4] and artificial blood vessels for microsurgery [5]. The production of CMC film from nata de coco (CMCn) is limited

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call