Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a group of recalcitrant compounds whose widespread use in a variety of consumer products has led to contamination of groundwater and surface water systems. Foam fractionation is a potential remediation technology for treatment of PFAS contaminated water, which takes advantage of the high surface activity imparted by the fluorocarbon chain to remove them from solution by adsorption to the surface of air bubbles. In this study, the effect of mono- and di-valent cations on the performance of a PFAS foam fractionation process where sodium dodecyl sulphate (SDS) is used as a co-foaming agent has been evaluated. The results indicated that the separation of PFAS was improved in an order that followed the charge density of the salts with Mg2+ > Na+ > K+. It was also observed that at salt concentrations above 100 mM for Na+, above 10 mM for K+ and Mg2+ but between 0.1 and 10 mM for Ca2+ in the presence of greater than 4 ppm of SDS, the cations can complex with the SDS in the system and suppress foam formation due to the surfactant precipitation. Foam fractionation was able to remove perfluorohexane sulphonic acid (PFHxS), perfluorooctanoic acid (PFOA) and perfluorooctane sulphonic acid (PFOS) from a sample of Australian groundwater to below the analytical detection limit of 0.1 ppb within 60 min with SDS being used as the co-foaming agent, but was unable to remove the short chain perfluorobutanoic acid (PFBA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.