Abstract

This work examined the effects of precalving administration of continuous-release monensin capsule on postcalving milk fatty acid (FA) profile and on the accuracy of FA as a biomarker in the early identification of cows with elevated blood plasma nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) concentrations. Approximately 3 wk before expected calving, 203 multiparous Estonian Holstein cows were randomly divided into control (CO; n = 116) and experimental (MO; n = 87) groups, and a continuous-release capsule of monensin was administered to the MO cows. Blood samples were taken daily in the first 4 d postpartum, then on the sixth or seventh day in milk, twice in the second week, and thenceforth once per week until the end of the sixth week. Milk samples were taken once from 4 to 7 d in milk, twice in the second week, and thenceforth once per week. Blood samples were analyzed for NEFA and BHB, and milk was analyzed for FA concentrations. Cows with postpartum BHB concentrations ≥1.2 mmol/L at least once during the 6 wk were classified as hyperketonemic (HYK), and cows with NEFA concentrations ≥1.0 mmol/L as having elevated concentration of NEFA (NEFAH). The ability of FA to predict NEFAH and HYK cows was studied with logistic regression and receiver operating characteristic curve analysis and the identification accuracy was estimated by area under the receiver operating characteristic curve. For these analyses, we used FA measured on the ninth day after calving. Monensin administration affected FA mobilization and metabolism of the animals as blood NEFA were lower in the MO group on wk 1 and wk 3, and BHB values were considerably lower from wk 1 to wk 4 compared with the CO group. The FA dynamics were generally similar for MO and CO groups. Monensin administration resulted in higher concentrations of C15:0, C16:0, iso C17:0, anteiso C15:0, anteiso C17:0, total trans monounsaturated FA, and C18:2 cis-9,trans-11, and lower proportions of C18:0, C18:1 cis-9, and most of the iso FA. The identification accuracy of NEFAH and HYK cows was higher in the CO compared with the MO group and for the identification of HYK compared with NEFAH cows (0.75-0.77 vs. 0.78-0.80 in the CO group, and 0.61-0.66 vs. 0.68-0.75 in the MO group for NEFAH vs. HYK, respectively). For all FA, the threshold values to identify NEFAH and HYK cows were different in the CO and MO groups. Results suggest that specific threshold values for the identification of NEFAH and HYK cows could be applicable only within similar feeding conditions and rumen environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call