Abstract

The compatibility of several binary and ternary alloys in a magma environment was studied. Binary alloys containing molybdenum and ternary alloys containing chromium and molybdenum were exposed to basaltic lava at 1150/sup 0/C for periods of 24 and 96 hours. A cover gas was used to produce oxygen and sulfur fugacities corresponding to those of the gases dissolved in basaltic melts. Three base metals were used. These included iron, nickel, and cobalt. The primary reactions in binary alloys were found to be sulfidation. Oxide scales with a spinel layer formed on ternary alloys. The synergistic effect of molybdenum and chromium additions in ternary alloys exhibited superior corrosion resistance to binary alloys which formed base-metal sulfides down grain-boundaries. Extensive analyses of the reaction products by scanning electron microscopy, X-ray energy dispersive analysis, electron microprobe analysis, and metallography are presented for each alloys. The products formed are discussed with reference to thermodynamic stability diagrams, and the reaction path concept is used to explain some of the corrosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call