Abstract

Aiming to develop alloys with better properties for orthopedic applications, the focus of the present research was to evaluate the effect of Mo at.% content on structural, mechanical, and tribological properties of hot isostatically pressed Ti-xMo (x = 4, 8, 12, 15, and 20 at.%) alloys. The structural evolution, mechanical properties, and tribological behavior of the nanostructured Ti-xMo alloys were evaluated using x-ray diffraction, scanning electron microscope, and ball-on-disk tribometer. Wear tests were conducted under different applied loads of 2, 8, and 16 N. Experimental results indicated that the structural evolution and morphological changes of the milled alloys were sensitive to their molybdenum (Mo) content. The morphological characterization showed that the crystallite size and the particle size decreased with increasing Mo content (at.%) reaching the lowest values of 27 and 26 nm in the case of Ti-15Mo and Ti-20Mo, respectively. On the other hand, the coefficient of friction and wear rates were found to be decreasing with increasing Mo content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.