Abstract

Titanium has many limitations in coverage and frequency of application due to its expensive alloying elements and complex manufacturing process. The biocompatible Ti-Mo-Fe ternary beta titanium alloys were designed by replacing high-cost beta-stabilizer elements (V, Nb, Zr, etc.) with low-cost Mo and Fe elements. In addition, it was attempted to obtain a low-cost, high-strength beta-titanium alloy with 800 MPa or more by applying the powder metallurgy process technology to the Ti-Mo-Fe alloy system. The added Mo element has the effect of reducing the elastic modulus of the titanium alloy without reducing its strength. In this study, Ti-Mo-Fe alloys designed with different Mo contents were fabricated using a powder metallurgy process and analyzed in connection with microstructural properties, phase changes, and mechanical properties. As Mo contents are increased, the α-lath thickness of Widmanstätten decreases and the size of prior β grain decreases. It was confirmed that the hardness and tensile strength were excellent and were compared with the ingot material of the same alloy system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call