Abstract

Citrus pectin was chemically and thermally modified in order to increase the hydrophobic character of the molecule and its adsorptivity to the oil–water interface. The degree of acetylation and methylesterification was increased and the molecular weight was reduced. The emulsion formation and stabilization properties of these modified pectins were evaluated by surface and interfacial tension measurements and emulsification experiments. For the production of emulsions, a high pressure homogenizer was used. The viscosity ratio between oil and emulsion phase was adjusted by varying the amount of added sucrose. Pectins with a higher degree of methylesterification (DE) decrease the interfacial tension significantly compared to the unmodified pectin. Pectins with increased degree of acetylation (DAc), however, show higher interfacial tension values. In emulsification experiments, pectins with a reduced molecular weight do neither significantly reduce droplet sizes nor improve emulsion stability. Pectins with increased DE or DAc reduce the Sauter mean diameter d3,2 of emulsions significantly and, in case of an DE increase, also show excellent long term stability. Their performance is also superior to sugar beet pectin under comparable experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.