Abstract
Isothermal crystallization of poly(phenylene sulfide) with three molecular weights (Mw = 22k, 48k, and 52k, respectively) under shear condition has been investigated. It appears that shear can induce all these three PPS samples to form a thread-like crystal structure which consists of the numerous stable nuclei that align tightly in the direction of shear. Crystallization kinetics of PPS has been greatly influenced by shear flow. Higher shear rate and long shear time can lead to decrease of spherulite growth rate of PPS. Also, the spherulite growth rate of PPS is affected by supercoolings and molecular weight. For the lower molecular weight (Mw = 22k), the spherulite growth rate is independent on the shear rate and shear time; while for the higher ones (Mw = 48k and 52k), with the increasing of shear rate, the spherulite growth rate of PPS increases to reach maximum at first, and then decreases. The lower the crystallization temperature is, the more the spherulite growth rate changes, showing that higher orientation of molecular chains can be obtained more easily with increased supercooling. A model has been proposed to explain the mechanism of thread-like crystal formation under shear flow. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.