Abstract

Various molecular parameters, which characterize sodium hyaluronate in 0.2M NaCl solution, were obtained at 25°C by means of the static and dynamic light scattering and low shear viscometry over the molecular weight range of 5.94–627 × 104. Molecular weight distribution was obtained by using the Laplace inversion method of the autocorrelation function of the scattered light intensity and by Yamakawa theory for the wormlike chain with the stiff chain parameters for sodium hyaluronate in 0.2M NaCl (persistence length, chain diameter, molar mass per unit contour length, and the excluded-volume strength). The molecular weight distribution thus obtained reproduced the solution properties of sodium hyaluronate well. Especially, the intrinsic viscosity showed a good agreement over four orders of molecular weight with Yamakawa theory combined with the Barrett function. Sodium hyaluronate in 0.2M NaCl solution is well expressed by the wormlike chain model affected by the excluded-volume effect with the persistence length of 4.2 nm. © 1999 John Wiley & Sons, Inc. Biopoly 50: 87–98, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.