Abstract

ABSTRACTPoly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) samples were synthesized via aqueous atom transfer radical polymerization with DPn of 35, 151, 390, and 546 and dispersity of 1.13, 1.17, 1.20, and 1.18, respectively. All samples were exposed to temperature and pH variations at different concentration of polymer and salt (NaCl). Results indicated that cloud point (Tcl) can be controlled by changing DPn, polymer concentration, and ionic strength of solution. According to results, Tcl of the PDMAEMA chains shifted to lower temperatures with increasing solution pH at all molecular weight ranges due to deprotonation of tertiary amine groups in polymer structure. However, higher molecular weight polymers were more sensitive to pH variation especially in alkaline media. Also, higher polymer concentration acted as driving force to decrease cloud point of samples and formation of aggregates that was more predominant for higher molecular weights at alkaline media. Tcl of PDMAEMA chains decreased with increasing ionic strength even at low pH values for low molecular weight polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call