Abstract

This paper studies the effect of molecular mass on the melting temperature, enthalpy and entropy of hydroxy-terminated poly(ethylene oxide) (PEO). It aims to correlate the thermal behaviour of PEO polymers and their variation of molecular mass (MW). Samples ranging from 1500 to 200,000 isothermally treated at 373 K during 10 min, were investigated using DSC and Hot Stage Microscopy (HSM). On the basis of DSC and HSM results, melting temperatures were determined, and melting enthalpies and entropies were calculated. Considering the melting temperatures, it was found that the maximum or critical value of MW was found around 4000, and then these remain almost constant. This behaviour was interpreted assuming that lower MW fractions (MW 4000), as folded chains. The melting enthalpies showed a scattering effect at least up to MW 35,000. It was difficult to obtain any relationship between melting enthalpies in J g−1 and MW. These variations seem to be of statistical nature. Corrected enthalpy data on a molar basis (kJ mol−1) exhibited a linear relationship with MW. Considering the solid—liquid equilibrium, the melting entropies (in kJ mol−1) were calculated. These values were more negative as compared with molar enthalpy increases. It was explained because the changes in melting temperatures are much smaller than those observed in the enthalpy values. Linear relationship between enthalpies andentropies as a function of MW was deduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.