Abstract

Polydimethylsiloxane (PDMS) is the most popular and versatile material for soft lithography due to its flexibility and easy fabrication by molding process. However, for nanoscale patterns, it is challenging to fill uncured PDMS into the holes or trenches on the master mold that is coated with a silane anti-adhesion layer needed for clean demolding. PDMS filling was previously found to be facilitated by diluting it with toluene or hexane, which was attributed to the great reduction of viscosity for diluted PDMS. Here, we suggest that the reason behind the improved filling for diluted PDMS is that the diluent solvent increases in situ the surface energy of the silane-treated mold and thus the wetting of PDMS to the mold surface. We treated the master mold surface (that was already coated with a silane anti-adhesion monolayer) with toluene or hexane, and found that the filling by undiluted PMDS into the nanoscale holes on the master mold was improved despite the high viscosity of the undiluted PDMS. A simple estimation based on capillary filing into a channel also gives a filling time on the millisecond scale, which implies that the viscosity of PMDS should not be the limiting factor. We achieved a hole filling down to sub-200-nm diameter that is smaller than those of the previous studies using regular Sylgard PDMS (not hard PDMS, Dow Corning Corporation, Midland, MI, USA). However, we are not able to explain using a simple argument based on wetting property why smaller, e.g., sub-100-nm holes, cannot be filled, for which we suggested a few possible factors for its explanation.

Highlights

  • Nanoimprint lithography (NIL), which is not limited by light diffraction as in photolithography or charged beam scattering as in electron/ion beam lithography, is a lowcost and high-throughput process that offers ultrahigh resolution

  • Our study suggests that the wetting properties between PDMS and mold are important for PDMS filling into the nanoscale pattern, and the improved filling by the diluted PDMS could be mainly due to the diluent toluene or hexane increasing in situ the surface energy of the anti-adhesion-treated mold, rather than due to the reduced viscosity of the diluted PDMS

  • Though water contact angle is expected to differ greatly from PDMS contact angle as the two materials are very different, our measurement indicates an increase of surface energy upon additional solvent treatment, which could lead to an increase or even change of sign of capillary force that is proportional to γsa − γsl

Read more

Summary

Introduction

Nanoimprint lithography (NIL), which is not limited by light diffraction as in photolithography or charged beam scattering as in electron/ion beam lithography, is a lowcost and high-throughput process that offers ultrahigh resolution. A natural solution to this issue is a polymer mold material. Most common polymer materials (polymethyl methacrylate (PMMA), polystyrene, polycarbonate, etc.) are not suitable because they are incompatible with anti-adhesion surface treatment needed for clean demolding. The mold material has to either possess a low surface energy such as those. Among the mold materials mentioned above, PDMS is the most popular and versatile mold material for nanoimprint and soft lithography because of its flexibility for conformal contact with non-planar surfaces, high UV transparency, low surface energy, high gas permeability, chemical inertness, and ease of handling. Besides its low Young's modulus, it is found challenging to fill uncured PDMS into the nanoscale pattern on the master mold that is coated with an antiadhesion monolayer needed for clean demolding. If viscosity is the limiting factor, the hole filling depth should be increased with the filling time, which is not the case according to our experiment

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.