Abstract

During the transition from research to market, the fabrication of microfluidic devices in thermoplastic substrates is inevitable. For short production runs of several hundred products, hot embossing is the typical method before moving on to a typically more expensive injection molding process for higher production volumes. In this work, we investigated the effect of mold material used during hot embossing on feature fidelity for microfabrication in cyclic olefin polymer (COP) substrate. Specifically, we designed a simple flow-focusing microfluidic device and fabricated three different molds using silicon wafer by deep reactive ion etching (DRIE), aluminum filled high temperature epoxy by soft lithography and aluminum by CNC milling. We performed hot embossing experiments with 2mm thick COP substrates and these three different molds using automatic bench top Carver hot press. Finally, we characterized the hot embossed substrates by optical and scanning electron microscopy. Fabrication results demonstrate that the mold material plays a big role in feature fidelity. Among the mold materials used, silicon substrate performed the worst based on defects after demolding. Epoxy and aluminum molds were similar in terms of microfabricated feature defects in the substrate which could be mostly attributed to their coefficient of thermal expansion (CTE). A mold material with a CTE closer to the thermoplastic will result in much better feature fidelity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call