Abstract
Surface energetic properties of mineral oxides are important in many applications. Since oxide surfaces in practice have generally come in contact with water molecules, it is important to know how water coverage affects the surface properties. In this work, five oxide samples, namely MgO, Al 2O 3, TiO 2, SnO 2 and SiO 2 are heat-treated to various extents, to produce different degrees of hydration, and characterized thereafter by inverse gas chromatography. Water contents of the treated samples are determined independently by Karl Fischer titration, and specific surface areas are measured by the BET method. The results show that in general as water coverage decreases, the Lifshitz–van der Waals component of the specific surface free energy ( σ S LW) increases, but the acid–base interaction potential (−Δ G AB) decreases. These attributes are more sensitive to changes in water coverage at lower coverages, where the surface is presumed to consist of patches of molecular water and unhydrated hydroxyl groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.