Abstract

During the pneumatic conveying, pulverized coal with different moisture contents may develop substantial difference in flow characteristics, whose cause is not fully understood. This study focused on influence of moisture content on conveying characteristics in an experimental test facility with the conveying pressure up to 4 MPa. The experiments included soft coal and lignite with similar density and particle size. With the increase in moisture content, the mass flow rate decreased for lignite (3.24% < M < 8.18%) but increased at first and then decreased for soft coal (0.4% < M < 6.18%) at same operating parameters. The flowability of soft coal was worse than that of lignite at similar operating parameters and external moisture content. The extremal conveying moisture contents of two coal types were obtained. The particle charge and surface moisture content were investigated to indicate influence mechanism of moisture content on mass flow rate in pneumatic conveying at high pressure. Pressure drop of soft coal was greater than that of lignite for same test section. The conveying phase diagram of dense-phase pulverized coal at high pressure was obtained and the pressure drops through different test sections were compared and analyzed. The bend loss factor rose with the increase in moisture content and was independent of conveying velocity and solid–gas ratio in dense-phase pneumatic conveying at high pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call