Abstract

Films of regenerated Bombyx mori silk are strongly affected by absorbed moisture, a phenomenon studied here by differential scanning calorimetry (DSC). Exposure of previously dried films to environments of controlled relative humidity produces test samples of well-defined equilibrium moisture content. Ultimate moisture uptake is as high as 20–23% (by weight) at 75% relative humidity. The glass transition temperature, Tg, drops by 40°C at moisture uptakes as low as 2%, and Tg depressions as large as 140°C are observed at higher relative humidity. The moisture-induced decrease of Tg is completely reversible, as a film remoistened and then redried possesses an unchanged Tg. Trends in Tg with water uptake correspond reasonably well to predictions of a classical thermodynamic theory, indicating that the plasticization effect of moisture on the combined silk-water system can be satisfactorily explained from macroscopic properties of the constituents without any reference to specific interactions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 401–410, 1997

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.