Abstract

The effect of the fiber to matrix modulus of elasticity ratio varying from 1.0 to 200 was investigated for a two-dimensional plane-stress composite configuration having a simulated fiber volume fraction of 0.45 and containing a discontinuous fiber. Uniaxial loading parallel to the fibers was considered. Two independent techniques were used: moire strain analysis and finite-element analysis. Displacements were measured from four experimental models by utilizing optical fringe-multiplication techniques. The finite-element method yielded stresses which agreed closely with those obtained from the experimental analysis. Matrix stress-concentration factor near the discontinuous fiber was found to increase rapidly with increasing modulus ratio, reaching a value of 20 for a modulus ratio of 200. The finite-element method was shown to be a valuable tool for micromechanical stress analysis of composite materials, and the accuracy of strain analysis by moire-fringemultiplication techniques was demonstrated for problems containing sever strain gradients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.