Abstract

The aim of this study was to investigate molecular candidates for bone implant nanocoatings, which could improve biocompatibility of implant materials. Primary rat bone cells and murine preosteoblastic MC3T3-E1 cells were cultured on enzymatically modified hairy regions (MHR-A and MHR-B) of apple pectins. MHRs were covalently attached to tissue culture polystyrene (TCPS) or glass. Uncoated substrata or bone slices were used as controls. Cell attachment, proliferation, and differentiation were investigated with fluorescence and confocal microscopy. Bone cells seem to prefer MHR-B coating to MHR-A coating. On MHR-A samples, the overall numbers as well as proportions of active osteoclasts were diminished compared to those on MHR-B, TCPS, or bone. Focal adhesions indicating attachment of the osteoblastic cells were detected on MHR-B and uncoated controls but not on MHR-A. These results demonstrate the possibility to modify surfaces with pectin nanocoatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.