Abstract

Polymer nanocomposites based on a very small quantity of carbon nanotube (CNT) and thermotropic liquid crystal polymer (TLCP) were prepared by simple melt blending using a twin-screw extruder. Morphological observations revealed that modified CNT was uniformly dispersed in the TLCP matrix and increased interfacial adhesion between the nanotubes and the polymer matrix. The enhancement of the storage and loss moduli of the TLCP nanocomposites with the introduction of CNT was more pronounced at low frequency region, and non-terminal behavior observed in the TLCP nanocomposites resulted from the nanotube–nanotube and polymer–nanotubes interactions. There is significant dependence of the mechanical, rheological, and thermal properties of the TLCP nanocomposites on the uniform dispersion of CNT and the interfacial adhesion between CNT and TLCP matrix, and their synergistic effect was more effective at low CNT content than at high CNT content. The key to improve the overall properties of the TLCP nanocomposites depends on the optimization of the unique geometry and dispersion state of CNT and the interfacial interactions in the TLCP nanocomposites during melt processing. This study demonstrate that a very small quantity of CNT substantially improved thermal stability and mechanical properties of the TLCP nanocomposites, providing a design guide of CNT-filled TLCP composites with as great potential for industrial use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call