Abstract

We report on a nucleophilic study of esters R-C(=X)-Y-Ar in which the electrophilic center has been modified by replacing O by S in the leaving group or carbonyl center: 4-nitrophenyl acetate (1), S-4-nitrophenyl thioacetate (2), 4-nitrophenyl benzoate (3), and O-4-nitrophenyl thionobenzoate (4). The studies include O– and S– nucleophiles as well as α nucleophiles in H2O at 25.0 ± 0.1 °C. The sulfur nucleophile (4-chlorothiophenoxide, 4-ClPhS–) exhibits significant enhanced reactivity for the reactions with thiol and thione esters 2 and 4 compared with their oxygen analogues 1 and 3. On the contrary, the common nucleophile OH– is much less reactive towards 2 and 4 compared with 1 and 3. The effect of changing both the electrophilic center and the nucleofugic center on the reactivity of the other oxygen nucleophiles is not so significant: 4-chlorophenoxide (4-ClPhO–) is four to six times more reactive in the reactions with thiol and thione esters 2 and 4 compared with their oxygen analogues 1 and 3. The α effects exhibited by butan-2,3-dione monoximate (Ox–) and HOO– are strongly dependent on the nature of the electrophilic center of the substrates, indicating that the difference in the ground-state solvation energy cannot be fully responsible for the α effect. Our results clearly emphasize the strong dependence of the α effect on the substrate structure, notably, the nature of the electrophilic center. The impact of change in the nucleofuge (1→2) and the electrophilic center (3→4) on reactivity indicates that α nucleophiles will need to be “purpose built” for decontamination and nucleophilic degradation of specific biocides.Key words: α effect, nucleophilicity, nucleofuge effect, electrophilicity, polarizability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call