Abstract

The method of Coherent Gradient Sensing (CGS) in transmission, in conjunction with two and three dimensional finite element methods, is used to study the effect of mode mixity on crack tip stress fields. Using a two dimensional finite element analysis the outer bounds of the region of K-dominance were determined. A three dimensional finite analysis was utilized to study the effect of mode mixity on the three dimensional nature of the stress field in the immediate vicinity of the crack tip and to obtain an inner bound of the region of K-dominance. It was noted that increasing mode mixity leads to an increased rotation of the three dimensional zone, keeping its shape and size unchanged. In contrast, the region of K-dominance is seen to dramatically depend on mode mixity, both in shape and size. In addition, an analysis of the CGS interferograms was conducted to obtain an estimate of the regions of K-dominance experimentally. A least squares fit data analysis technique was used to extract fracture parameters, namely the stress intensity factors KI, KII and subsequently the crack tip phase angle, φ. The data points used for the least square fitting were obtained from the determined regions of K-dominance. The same fracture parameters were also evaluated from the finite element analysis, and good agreement was found between experimental measurements and finite element predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.