Abstract

New semiconducting metal oxides of various compositions are of great interest for efficient solar water oxidation. In this report, Mo-doped SnO2 (Mo:SnO2) thin films deposited by reactive magnetron co-sputtering in the Ar and O2 gas environment are studied. The Sn to Mo ratio in the films can be controlled by changing the O2 partial pressure and the deposition power of the Sn and Mo targets. Increasing the Mo concentration in the film leads to the increase in the oxygen vacancy density, which limits the maximum achievable photocurrent density. The thin films exhibit a direct band gap of 2.7 eV, the maximum achievable photocurrent density of 0.6 mA cm−2 at 0 VRHE and the onset potential of 0.14 VRHE. The incident photon to current transfer (IPCE) efficiency of 22% is shown at a 450 nm wavelength. The initial performance of the Mo:SnO2 thin films is evaluated for solar water oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.