Abstract
Abstract Four series of Mo 2 FeB 2 based cermets with the Mo/B atomic ratio in the range from 0.8 to 1.1 were prepared by reaction sintering process. The microstructure and crystalline phases were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicate that the transverse rupture strength (TRS) of the cermets increases with an increase of Mo/B atomic ratio and shows a maximum value of 1.9 GPa at a Mo/B atomic ratio of 0.9. At a higher atomic ratio the TRS decreases. The hardness of the cermets decreases monotonically from 90.8 HRA to 88.8 HRA with an increase of Mo/B atomic ratio. In Mo-rich cermets with an atomic ratio of Mo/B above 1.0, a new M 23 B 6 type phase (M 23 B 6 , where M represents a metal) is found. This phase has a lattice parameter a = 1.09 nm containing Mo, Fe, Cr and B with an atomic ratio close to 16:6:1:6 and is precipitated at the interface of Mo 2 FeB 2 grains or at the Mo 2 FeB 2 grain boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Refractory Metals and Hard Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.