Abstract

AbstractThe experimental results of the effect of concentration of Mn(II) ions on the growth kinetics of different faces of ammonium oxalate monohydrate single crystals from aqueous solutions at a constant temperature and different predefined supersaturations are described and discussed. It was observed that: (1) at a given supersaturation σ, Mn(II) ions lead to a decrease in the growth rates of different faces of AO crystals, (2) the growth of a particular face of the crystals occurs above a critical supersaturation σd but there is also another supersaturation barrier σ* when the rate abruptly increases with σ, (3) the values of σd and σ* increase with increasing concentration of the impurity, and (4) the values of σd depend on the growth kinetics of a face but those of σ* are independent of face growth kinetics. The experimental R(σ) data for different Mn(II) concentrations ci were analysed according to the model involving complex source of cooperating screw dislocations and concepts of instantaneous and time‐dependent impurity adsorption. It was found that: (1) for a given face the differential heat of adsorption Qdiff is higher during instantaneous impurity adsorption than that during time‐dependent adsorption, and (2) the values of Qdiff involved during instantaneous adsorption are related with face growth kinetics but those during time‐dependent adsorption are independent of face growth kinetics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.